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PGI is the default compiler on the XT5 systems.

Cray supplies wrappers to all of the compilers on the system so that the 

Fortran compiler is always invoked as “ftn”, the C compiler as “cc”, and 

C++ as “CC” regardless of the actual compile vendor being used.

> module list

pgi/10.2.0

> ftn -V foo.f -o foo

pgfortran 10.2-0 64-bit target on Linux -tp barcelona-64

Compiling codes with PGI

Or you can call the compiler directly with “pgfortran” but you won’t get the 

Cray library wrappers for use in the XT5 system



On the Cray, to change the version of the PGI compiler, you need to switch 

modules:

> module switch pgi/10.2.0 pgi/9.0.4

> ftn -V foo.f -o foo

pgf90 9.0-4 64-bit target on Linux -tp barcelona

On your workstation, if you have multiple versions of PGI installed, you can 

invoke a different version of the compiler through the compile driver:

> pgfortran -V9.0-4 hello.f -o hello

pgfortran 9.0-4 64-bit target on Linux -tp istanbul-64

Using a different version of PGI



The PGI compile driver by default compiles for the processor on which the 

compilation takes place.  The driver allows you to easily cross compile for 

another target processor:  

> pgfortran -V foo.f -o foo -tp istanbul-64

pgfortran 10.4-0 64-bit target on Linux -tp istanbul-64

The Cray compile driver appears to prevent, or not support, this capability 

as it is set up to cross-compile by default.  If you want to target an 

executable for istanbul-64, try creating *.o’s using pgfortran directly, then 

use ftn to link.

> pgfortran -V -c foo.f -tp istanbul-64

> ftn -V foo.o -o foo

Changing target processors



> ftn foo.f -o foo

Invoking the compiler with no flags for optimization will set the scalar  

optimization level to 1 if –g is not specified.

> ftn -g foo.f -o foo

Invoking the compiler with no flags for optimization will set the scalar 

optimization level to 0 if –g is specified.

> ftn -O foo.o -o foo

Invoking the compiler with the -O flag for optimization will set the scalar 

optimization level to 2 regardless of whether –g is also specified. 

Optimization levels O0 through O4 perform increasing aggressive scalar

optimizations

Basic levels of scalar optimization



> ftn -fast foo.f -o foo

Invoking the compiler with the –fast (or –fastsse) flag sets common 

optimizations which include:  

-O2

-Munroll=c:1

-Mnoframe (gives the compiler another register)

-Mlre

-Mautoinline

-Mvect=sse <= this is the vectorizer

-Mscalarsse

-Mcache_align

-Mflushz

-Mpre

Basic levels of vector optimization



Vectorization is the key to getting the best performance out of floating point 

intense codes. Current processors are capable of operating on 128 bits at a 

time.  This means they can do 2 – double precision operations or 4 – single 

precision operations at the same time – as long as those operations can all be 

described by a single instruction (i.e. a vector operation).

AVX – coming by the end of the year, increases this to 256 bit wide units

The vectorizer performs the following operations:

Loop interchange and loop splitting

Loop fusion

Memory-hierarchy (cache tiling) optimizations

Generation of SSE instructions and prefetch instructions

Loop peeling to maximize vector alignment

Alternate code generation

Basic levels of vector optimization



There are several common coding issues that may prevent vectorization.  

The programmer may have enough knowledge to provide additional 

information to the compiler to work around these issues.

In C and C++ the compiler may not have enough information about the 

pointers passed into a subroutine to be able to determine that those pointers 

don’t overlap.  (-Msafeptr option or pragma or restrict keyword)

Function calls can be inlined to allow vectorization (-Minline)

Constants may be of the wrong type (-Mfcon)

Loops may be too long or too short.  In both cases, additional options to the 

vectorizer may be successful in generating vector code.

Common impediments to vector 

optimization
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-Msafeptr Option and Pragma

–M[no]safeptr[=all | arg | auto | dummy | local | static | global]

all All pointers are safe

arg Argument pointers are safe

local local pointers are safe

static static local pointers are safe

global global pointers are safe

#pragma [scope] [no]safeptr={arg | local | global | static | all},…

Where scope is global, routine or loop



If you are just starting with a new code, we suggest that you try a short run 

of the code with optimization level –O2.

If the answers look good, then try the same run with the –fast flag.

If the answers are the same as the first run, use –fast as the basis for further 

optimizations.  If the answers differ, try turning of optimizations one at a 

time until you find the optimization that is causing the difference.  You can 

then track down in your code where that difference occurs and determine if 

it can be fixed, or if the optimization needs to be left turned off.

Which level of optimization to start?



Optimization flags are processed on the command line in the order in which 

they occur.  For example - to turn on all –fast optimizations except loop 

redundant elimination:

> ftn -fast -Mnolre foo.o -o foo

Most optimizations can be turned on with the syntax –Moptimization

Most optimizations can be turned off with the syntax -Mnooptimization

Turning off optimizations



Optimizations and debugging don’t always go hand in hand, however...  

> ftn -fast -gopt foo.f -o foo

-gopt inserts debugging information without disabling optimizations.  It is 

often helpful for tracking down a code bug that only appears in optimized 

code, or a bug that occurs far enough into a code that running the code with 

no optimizations takes a painful amount of time.

Optimizations and debugging



Generating tracebacks

Linux uses the backtrace system call to create the stacktrace when a fault or error 

occurs. The only requirement is to link with the -Meh_frame option: 

> pgfortran -Meh_frame -o x x.f90 

Then before running the program, the following environment variable is set as 

follows: 

> export PGI_TERM=trace 



Generating tracebacks

Here is a sample traceback from within the PGI runtime.

(An attempt to deallocate an allocatable array more than one time): 

0: DEALLOCATE: memory at (nil) not allocated 

./x(__hpf_abort+0x7d) [0x40bb8d] 

./x(__hpf_dealloc+0xeb) [0x40b57b] 

./x(MAIN_+0x217) [0x408177] 

./x(main+0x40) [0x407f40] 

/lib64/libc.so.6(__libc_start_main+0xf4) [0x2b877285e154] 

./x [0x407e69] 



Here is a sample traceback from a SEGV in user code: 

Error: segmentation violation, address not mapped to object 

rax 0000000005f45908, rbx 0000000000000001, rcx 00000000000187f9 

rdx 00000000000187f9, rsp 00007fffcdaef9a0, rbp 00007fffcdaef9a0 

rsi 00007fffcdaef9c4, rdi 00002ab2dd77e020, r8 00000000ffffffff 

r9 0000000000000000, r10 0000000000000022, r11 0000000000000246 

r12 0000000000000001, r13 00007fffcdaefae0, r14 0000000000000000 

r15 0000000000000000 

/lib64/libpthread.so.0 [0x2ab2dd1ebc10] 

./y(init_+0x1f) [0x4081bf] 

./y(MAIN_+0x9b) [0x407ffb] 

./y(main+0x40) [0x407f40] 

/lib64/libc.so.6(__libc_start_main+0xf4) [0x2ab2dd468154] 

./y [0x407e69] 



There are too many compiler flags to remember all of their options.  You can 

get help in several places:

> man pgfortran

> pgfortran -fast -help – gives help on -fast

Full PDF manuals are online in (e.g)

/opt/pgi/10.3.0/linux86-64/2010/doc

Manuals are also available at:

http://www.pgroup.com/resources/docs.htm

What does this flag do?



Optimization is as much a user exercise as it is a compiler exercise.  To see 

what the compiler thinks of your code, compile using the –Minfo flag.

> pgfortran -fast -Minfo foo.f -o foo

Use the information generated by –Minfo to help identify coding issues and 

locate places where code can be improved so the compiler can do an optimal 

job on it.

> pgfortran -Minfo -help

What exactly is being optimized?
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> ftn -fast -Mipa=fast -Minfo -S graphRoutines.f90

localmove:
334, Loop unrolled 1 times (completely unrolled)
343, Loop unrolled 2 times (completely unrolled)
358, Generating vector sse code for inner loop
364, Generating vector sse code for inner loop

Generating vector sse code for inner loop
392, Generating vector sse code for inner loop
423, Generating vector sse code for inner loop

Use –Minfo to see which loops vectorize

Use –Mneginfo to see why things don’t vectorize



The –fast flag is the 90/90 solution for code optimization.  That is, it 

achieves about 90% of the possible performance for about 90% of the codes.

That means there are some additional areas that can be explored.

Interprocedural analysis can be helpful for C codes and Fortran codes 

without interface blocks.  (Interface blocks are to the language specification 

what IPA is to the compiler)

> ftn -fast -Minfo -Mipa=fast foo.f -o foo

***If compiling and linking are done in separate steps, you must be sure to 

pass the IPA flag to the linker too.  

IPA involves an additional pass of the compiler.

Additional compiler optimizations



The suggested usage for IPA is to apply –Mipa=fast globally

The –Mipa flag has a large number of options that may be helpful in certain 

circumstances.  These options are generally best applied to a specific 

subroutine to address a specific issue.

A couple of the more interesting flags include:

-Mipa=libopt This allows recompiling and optimization of routines from 

libraries using IPA information.  If you make extensive use of libraries in 

your code, try compiling those libraries with –Mipa=fast so that you have 

the option of using IPA when you link your application to that library

-Mipa=safeall This declares that all unknown procedures are safe.

Additional IPA optimizations



Several memory management options are available and may be beneficial 

depending on how your code accesses memory.  Smartalloc tends to do a 

better job managing memory then standard Unix malloc.

Smartalloc can make use of “big pages”.  Using big pages helps to minimize 

the number to TLB misses.  This option tends to be helpful for codes that do 

a big initial allocate and then manage their own memory.

> ftn -fast -Minfo -Mipa=fast -Msmartalloc=huge foo.f -o foo

***-Msmartalloc must be used to compile main, and also to link the 

program

Additional compiler optimizations



Inlining can have a significant impact on application performance.  It’s most 

dramatic effects tend to be on C++ codes which have many many small 

functions.

Inlining can be done at several different points in the compilation.

-Minline/autoinline - during the regular compilation phase

-Mipa=inline               - during the recompile for IPA

Inline libraries             - created during the “make” process

Additional compiler optimizations



The auto inliner is for C/C++ only.  This enables inlining functios

with the inline attribute.  The suboptions control how the auto inliner

operates.

-M[no]autoinline

Enable inlining of functions with the inline attribute.

-Mautoinline is implied with the -fast switch.  The options are:

levels:n Inline up to n levels of function calls; the default

is to inline up to 10 levels.

maxsize:n Only inline functions with a size of n or less.  The

size roughly corresponds to the number of statements

in the function, though the correspondence is not

direct.  The default is to inline functions with a

size of 100 or less.

totalsize:n

Stop inlining when this function reaches a size of n.

The default is to stop inlining when a size of 8000

has been reached.



Use of -Minline/-Mextract to create an inline library.  This works for

all languages(C/C++/FORTRAN).  To create an inline library with 

-Mextract do the following:

pgfortran -Mextract=lib:libfloat.il -c add.f90
pgfortran -Mextract=lib:libfloat.il -c sub.f90
pgfortran -Mextract=lib:libfloat.il -c mul.f90
pgfortran -Mextract=lib:libfloat.il -c div.f90

This creates an inline library name libfloat.il which can be used 

during compliation as follows:

pgf90 -fast -Minline=libfloat.il -c -Minfo -Mneginfo
driver.f90

Creating and Using Inline Libraries



The -Minfo messages for this compile are:

test:
14, Generated an alternate loop for the loop

Generated vector sse code for the loop
21, Generated an alternate loop for the loop

Generated vector sse code for the loop
22, add inlined, size=2, file add.f90 (2)
33, Generated an alternate loop for the loop

Generated vector sse code for the loop
34, sub inlined, size=2, file sub.f90 (2)
45, Generated an alternate loop for the loop

Generated vector sse code for the loop
46, mul inlined, size=2, file mul.f90 (2)
57, Generated an alternate loop for the loop

Generated vector sse code for the loop
58, div inlined, size=2, file div.f90 (2)

As a result of inlining the functions add, sub, mul, and div the

compiler was then able to vectorize the loops that contained those

calls.



Use of -Mipa=inline to inline functions/subroutines. This works for all 

languages(C/C++/FORTRAN).  Create the library using the -Mipa=inline 

option as follows:

pgfortran -Mipa=fast,inline -Minfo -Mneginfo -c add.f90
pgfortran -Mipa=fast,inline -Minfo -Mneginfo -c sub.f90
pgfortran -Mipa=fast,inline -Minfo -Mneginfo -c mul.f90
pgfortran -Mipa=fast,inline -Minfo -Mneginfo -c div.f90

ar cr libfloat.a add.o sub.o mul.o div.o

This creates a library named libfloat.a which can be used during compliation

as follows(need to use the libinline suboption):

pgf90 -fast -Mipa=fast,inline,libinline -c -Minfo -Mneginfo
driver.f90

pgf90 -fast -Mipa=fast,inline,libinline -o d driver.o
libfloat.a



The -Minfo messages for this compile are:

test:
14, Generated an alternate loop for the loop

Generated vector sse code for the loop
21, Loop not vectorized/parallelized: contains call
33, Loop not vectorized/parallelized: contains call
45, Loop not vectorized/parallelized: contains call
57, Loop not vectorized/parallelized: contains call

IPA: Recompiling driver.o: stale object file
test:

0, Pointer c is only set via allocate statements
Pointer b is only set via allocate statements
Pointer a is only set via allocate statements
Function add does not write to any of its arguments
Function add does not reallocate any of its arguments
Function add does not reassociate any of its pointer arguments
Function add does not reallocate any global variables
Function add does not reassociate any global pointers
Function add does not read any global (common/module) variables
Function add does not write any global (common/module) variables
Function sub does not write to any of its arguments
Function sub does not reallocate any of its arguments
Function sub does not reassociate any of its pointer arguments
Function sub does not reallocate any global variables
Function sub does not reassociate any global pointers
Function sub does not read any global (common/module) variables
Function sub does not write any global (common/module) variables
Function mul does not write to any of its arguments
Function mul does not reallocate any of its arguments
Function mul does not reassociate any of its pointer arguments
Function mul does not reallocate any global variables



There are a number of compiler options that offer the possibility of 

significant performance improvement at the expense of accuracy. If you are 

having numerical issues, you might tighten some restrictions.

-Kieee – floating point strictly conforms to IEEE 754 standard.  (off by default)

-Ktrap – turns on the behavior of the processor when exceptions occur

-Mdaz – mode to treat IEEE denormalized input numbers as zero

-Mflushz – set SSE to flush-to-zero mode (on with –fast)

-Mfprelaxed - perform certain floating point operations using relaxed precision when it 

improves the speed.  (This is the default mode on most other vendor’s compilers)

Compiler optimizations and accuracy



There are three general techniques for using more then one core for a 

computation.  Of course, on large XT5 machines, all codes implement 

parallelism through MPI.

While most codes are MPI everywhere, some codes benefit by using the 

shared memory on the node through either automagic parallelizing by the 

compiler or/and OpenMP.  OpenMP compilation is invoked with the –mp 

flag, automagic parallelization with the –Mconcur flag.

Environment variables which can effect OpenMP performance include:

OMP_SCHEDULE – can be static, dynamic, guided or auto

OMP_NUM_THREADS – specifies the number of threads to use

OMP_STACKSIZE – override the default stack size for new threads.

Using more then one core



Cray provides some excellent tools for profiling using hardware counters.

PGI also provides some mechanisms for profiling of code.  The simplest 

method is to use pgcollect.  No special build process is needed, although 

compiling with –Minfo=ccff may provide useful feedback.  This imbeds the 

–Minfo messages into the executable which can then be viewed with the 

performance profile.

Run your code as:

> pgcollect a.out

Then view the results with the GUI tool - pgprof

> pgprof -exe a.out

Profiling code



To get a general profile for an MPI code, you may wish to just profile one of 

the MPI processes. Running the code is where things change. Instead of 

launching the executable via mpiexec, launch a script instead: 

> mpiexec -np 2 ./doit

The doit script for code compiled and linked with MPICH2 might look like the 

following: 

#!/bin/csh

if ($PMI_RANK == 0) then 
pgcollect ./test 

else 
./test 

endif

After the run is complete, there will be only one pgprof.out file which can be 

viewed using: 

> pgprof -exe ./test pgprof.out

Profiling code
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Extending Host-side x64 Compilers to 

Enable Incremental use of GPGPUs



 NVIDIA TESLA C1060

 Lots of available performance ~1 TFlops peak SP

 Programming is a challenge

 Getting high performance is lots of work

 NVIDIA CUDA programming model and C for 
CUDA simplify GPGPU programming

 Much easier than OpenGL/DirectX, still challenging

 PGI CUDA Fortran simplifies it even further

 PGI Accelerator compilers do for GPU 
programming what OpenMP did for Posix 
Threads



Emerging Cluster Node Architecture
Commodity Multicore x86 + Commodity Manycore GPUs

CPU Cores
GPU/Accelerator Cores



Simple Fortran Matrix Multiply 

for an x64 Host

do j = 1, m
do i = 1, n
do k = 1,p

a(i,j) = a(i,j) + b(i,k)*c(k,j) 
enddo

enddo
enddo



extern "C" __global__ void
mmkernel( float* a,float* b,float* c,

int la,int lb,int lc,int n, 
int m,int p ) 

{
int i = blockIdx.x*64+threadIdx.x;
int j = blockIdx.y;

float sum = 0.0;
for( int k = 0; k < p; ++k ) 
sum += b[i+lb*k] * c[k+lc*j];

a[i+la*j] = sum;
}

Basic CUDA C Matrix Multiply Kernel 

for an NVIDIA GPU



extern "C" __global__ void

mmkernel( float* a, float* b, float* c, int la, int lb, int lc, int n, int m, int p ) 
{

int tx = threadIdx.x;

int i = blockIdx.x*128 + tx;  int j = blockIdx.y*4;

__shared__ float cb0[128], cb1[128], cb2[128], cb3[128];

float sum0 = 0.0, sum1 = 0.0, sum2 = 0.0, sum3 = 0.0;

for( int ks = 0; ks < p; ks += 128 ){

cb0[tx] = c[ks+tx+lc*j];     cb1[tx] = c[ks+tx+lc*(j+1)];

cb2[tx] = c[ks+tx+lc*(j+2)]; cb3[tx] = c[ks+tx+lc*(j+3)];

__syncthreads();

for( int k = 0; k < 128; k+=4 ){

float rb = b[i+lb*(k+ks)];

sum0 += rb * cb0[k];   sum1 += rb * cb1[k];

sum2 += rb * cb2[k];   sum3 += rb * cb3[k];

rb = b[i+lb*(k+ks+1)];

sum0 += rb * cb0[k+1]; sum1 += rb * cb1[k+1];

sum2 += rb * cb2[k+1]; sum3 += rb * cb3[k+1];

rb = b[i+lb*(k+ks+2)];

sum0 += rb * cb0[k+2]; sum1 += rb * cb1[k+2];

sum2 += rb * cb2[k+2]; sum3 += rb * cb3[k+2];

rb = b[i+lb*(k+ks+3)];

sum0 += rb * cb0[k+3]; sum1 += rb * cb1[k+3];

sum2 += rb * cb2[k+3]; sum3 += rb * cb3[k+3];

}

__syncthreads();

}

a[i+la*j] = sum0;     a[i+la*(j+1)] = sum1;

a[i+la*(j+2)] = sum2; a[i+la*(j+3)] = sum3;

}

Optimized

CUDA C 

Matrix

Multiply

Kernel



Host-side CUDA C Matrix Multiply GPU 

Control Code

cudaMalloc( &bp, memsize );
cudaMalloc( &ap, memsize );

cudaMalloc( &cp, memsize );

cudaMemcpy( bp, b, memsize, cudaMemcpyHostToDevice );
cudaMemcpy( cp, c, memsize, cudaMemcpyHostToDevice );
cudaMemcpy( ap, a, memsize, cudaMemcpyHostToDevice );

dim3 threads( 128 );
dim3 blocks( matsize/128, matsize/4 );
mmkernel<<<blocks,threads>>>(ap,bp,cp,nsize,nsize,

nsize,matsize,matsize,matsize);

cudaMemcpy( a, ap, memsize, cudaMemcpyDeviceToHost );

cudaFree( ap );
cudaFree( bp );

cudaFree( cp );



What is CUDA Fortran?

 CUDA Fortran is an analog to NVIDIA's C for CUDA 

 CUDA Fortran was co-defined by PGI and NVIDIA and

implemented in the PGI 2010 Fortran 95/03 compiler

 Includes support for the full CUDA programming model

API and introduces intuitive Fortran language extensions

to simplify host vs GPU data management

 Is supported on Linux, MacOS and Windows, including 

support within PGI Visual Fortran on Windows



. . .

subroutine mmul( A, B, C )                    ! Host routine to drive mmul_kernel

real, dimension(:,:) :: A, B, C

! Declare allocatable device arrays

real, device, allocatable, dimension(:,:) :: Adev,Bdev,Cdev

type(dim3) :: dimGrid, dimBlock ! Define thread grid, block shapes

! Begin execution

N = size( A, 1 )

M = size( A, 2 )

L = size( B, 2 ) 

allocate (Adev(N,M), Bdev(M,L), Cdev(N,L)) ! Allocate device arrays in GPU memory

Adev = A(1:N,1:M)                          ! Copy input A to GPU device memory

Bdev = B(1:M,1:L)                          ! Copy input B to GPU device memory

dimGrid = dim3( N/16, M/16, 1 )            ! Define thread grid dimensions

dimBlock = dim3( 16, 16, 1 )               ! Define thread block dimensions

! Launch mmul_kernel on GPU

call mmul_kernel<<<dimGrid,dimBlock>>>( Adev, Bdev, Cdev, N, M, L) 

C(1:N,1:L) = Cdev ! Copy result C back to host memory

deallocate( Adev, Bdev, Cdev )             ! Free device arrays

end subroutine mmul

end module mmul_mod

CUDA Fortran

Matrix Multiply Host Routine



module mmul_mod ! Module containing matrix multiply

use cudafor !   CUDA Fortran GPU kernel

contains

attributes(global) subroutine mmul_kernel( A, B, C, N, M, L )

real :: A(N,M), B(M,L), C(N,L)

integer, value :: N, M, L

integer :: i, j, kb, k, tx, ty

real, shared :: Asub(16,16), Bsub(16,16)   ! Declare shared memory submatrix temps

real :: Cij ! Declare C(i,j) temp for accumulations

! Begin execution

tx = threadidx%x ! Get my thread indices 

ty = threadidx%y !

i = blockidx%x * 16 + tx ! This thread computes 

j = blockidx%y * 16 + ty !   C(i,j) = sum(A(i,:) * B(:,j))

Cij = 0.0

do kb = 1, M, 16

Asub(tx,ty) = A(i,ks+tx-1)              ! Each of 16x16 threads loads one

Bsub(tx,ty) = B(ks+ty-1,j)              !   one element of ASUB & BSUB into

call syncthreads()                      !   shared memory

do k = 1,16                             ! Each thread accumulates length 16 

Cij = Cij + Asub(tx,k) * Bsub(k,ty)  !   partial dot product into its Cij

enddo

call syncthreads()

enddo

C(i,j) = Cij ! Each thread stores its element

!   to the global C array

end subroutine mmul_kernel ! End CUDA Fortran GPU kernel routine

. . .

CUDA Fortran

Matrix Multiply GPU Kernel



CUDA C vs CUDA Fortran

CUDA C
 supports texture memory

 supports Runtime API

 supports Driver API

 cudaMalloc, cudaFree

 cudaMemcpy

 OpenGL interoperability

 Direct3D interoperability

 arrays zero-based

 threadidx/blockidx 0-based

 unbound pointers

 pinned allocate routines

CUDA Fortran
 NO texture memory (yet)

 supports Runtime API

 NO Driver API

 allocate, deallocate

 assignments

 NO OpenGL interoperability

 NO Direct3D interoperability

 arrays one-based

 threadidx/blockidx 1-based

 allocatable are device/host

 pinned attribute



!$acc region
do j = 1, m

do k = 1, p
do i = 1,n

a(i,j) = a(i,j) + b(i,k)*c(k,j) 
enddo

enddo
enddo

!$acc end region

PGI Accelerator 

Directive-based Fortran Matrix Multiply for 

x64+GPU



PGI Accelerator
Compilers

void saxpy (float a, 

float *restrict x, 

float *restrict y, int n){

#pragma acc region

{

for (int i=1; i<n; i++)   

x[i] = a*x[i] + y[i];

}

}

saxpy: 

…

movl    (%rbx), %eax

movl    %eax, -4(%rbp)

call    __pg_cu_init

. . .

call    __pg_cu_alloc

…

call    __pg_cu_uploadp

…

call    __pg_cu_paramset

…

call    __pg_cu_launch

…

Call    __pg_cu_downloadp

…

Host x86 Code
GPU/Accelerator Code 

static __constant__ struct{

int tc1;

float* _y;

float* _x;

float _a;

}a2;

extern "C" __global__ void

pgi_kernel_2() {

int i1, i1s, ibx, itx;

ibx = blockIdx.x;

itx = threadIdx.x;

for( i1s = ibx*256; i1s < a2.tc1; i1s += gridDim.x*256 ){

i1 = itx + i1s;

if( i1 < a2.tc1 ){

a2._x[i1] = (a2._y[i1]+(a2._x[i1]*a2._a));

}

}

}

+

Unified HPC

Application

compile

link

execute … with no change to existing makefiles, scripts, 

programming environment, etc



PGI Accelerator

Program Execution Model
 Host

 executes most of the program

 allocates accelerator memory

 initiates data copy from host memory to accelerator

 sends kernel code to accelerator

 queues kernels for execution on accelerator

 waits for kernel completion

 initiates data copy from accelerator to host memory

 deallocates accelerator memory

 Accelerator
 executes kernels, one after another

 concurrently, may transfer data between host and accelerator



PGI Accelerator Compute Region

 Compute region directive

 Fortran syntax

!$acc region [clause [,clause]…]

…

!$acc end region

 C syntax

#pragma acc region [clause [,clause]…] 

{ 

… 

}



PGI Accelerator Region Clauses

Clause Region Scope / Type

if (cond) compute

copy (list) compute, data

copyin (list) compute, data

copyout (list) compute, data

local (list) compute, data

updatein (list) compute, data, executable

updateout (list) compute, data, executable



PGI Accelerator

Loop Mapping Clauses

Clause Scope

host [(width)] loop

parallel [(width)] loop

seq [(width)] loop

vector [(width)] loop

private (list) loop

kernel loop 

independent * loop 

unroll (width)* loop

cache (list)* loop

* Not supported until PGI 10.6 (June 2010)



% pgfortran -fast -ta=nvidia -Minfo mm.F90
mm1:

11, Generating copyout(a(1:m,1:m))

Generating copyin(c(1:m,1:m))

Generating copyin(b(1:m,1:m))

Generating compute capability 1.0 binary

Generating compute capability 1.3 binary

12, Loop is parallelizable

13, Loop is parallelizable

Accelerator kernel generated

12, !$acc do parallel, vector(16)

13, !$acc do parallel, vector(16)

CC 1.0 : 6 registers; 24 shared, 80 constant, 0 local memory bytes; 100 occupancy

CC 1.3 : 6 registers; 24 shared, 80 constant, 0 local memory bytes; 100 occupancy

16, Loop carried reuse of 'a' prevents parallelization

17, Loop is parallelizable

Accelerator kernel generated

12, !$acc do parallel, vector(16)

16, !$acc do seq

Cached references to size [16x16] block of 'b'

Cached references to size [16x16] block of 'c'

17, !$acc do parallel, vector(16)

Using register for 'a'

CC 1.0 : 17 registers; 2072 shared, 84 constant, 0 local memory bytes; 33 occupancy

CC 1.3 : 17 registers; 2072 shared, 84 constant, 0 local memory bytes; 75 occupancyh

Compiler-to-User Feedback



Loop Schedules

Accelerator kernel generated

26, #pragma acc for parallel, vector(16)

27, #pragma acc for parallel, vector(16)

 Vector loops correspond to threadidx indices

 Parallel loops correspond to blockidx indices

 The loop nest above is mapped to CUDA schedule:

<<< dim3(ceil(N/16),ceil(M/16)),dim3(16,16) >>>

 PGI Accelerator compiler strip-mines to protect against 

very long loop limits



Summary

 State of GPU Programming Tools generally –
options, capabilities, robustness, ease-of-use all 
developing rapidly

 PGI CUDA Fortran – based on a proven GPGPU 
programming model – and it’s Fortran

 PGI Accelerator programming model – higher level, 
easily approachable, incremental (loop level, not 
routine-level), 100% portable source code, suitable for 
industry standardization, Fortran and C



Future Directions

 NVIDIA Fermi / CUDA 3.0 support – upon release of the HW

 Remaining features of the v1.1 PGI Accelerator programming model 
standard coming in PGI 10.6, June 2010

 New features to be added to the model, and then the compilers

 Asynchronous data transfers and kernel execution

 Support for multiple Accelerator devices

 PGI Accelerator Fortran/C full interoperability with CUDA Fortran/C

 Debugging – lots of work to do here, just on the compiler side

 Native PTX code generation on NVIDIA targets

 Optimizations – Planner, GPU memory hierarchy, Inlining, IPA-based

 New PGI Accelerator targets – multi-core x64, ATI, Larrabee all are 
candidates



Reference Materials

 Understanding the CUDA Data Parallel Threading 

Model

http://www.pgroup.com/lit/articles/insider/v2n1a5.htm

 CUDA Fortran Programming Guide and Reference

http://www.pgroup.com/lit/whitepapers/pgicudaforug.pdf

 PGI Fortran & C Accelerator Programming Model

http://www.pgroup.com/lit/whitepapers/pgi_accel_prog_model_1.1.pdf


